






mutant protein, the slope of the correlation is reduced for
the resonance of residue Met-49, and the chemical shifts of
residue Met-57 are highly perturbed. These results suggest that
the M61L mutant is less shifted toward the closed state in both
the 2OG and DNA complexes and that the environment of
Met-57 is altered. This last effect is explained by the close prox-
imity of this residue to Met-61 in the closed-state structure (14,
23, 31). The chemical shifts of both Met-49 and Met-57 are
perturbed strongly in the W89Y mutant (Figs. 5F, inset, and 8),
confirming that the W89Y mutation biases AlkB toward the

open state, as inferred previously from the reduced 2OG bind-
ing affinity of this mutant protein (Fig. 4). Therefore, the W89Y
mutation opposes shifting of the conformational ensemble
toward the closed state.

Accelerated Release of DNA Substrate Causes Uncoupled
Turnover of 2OG—Perturbation of the thermodynamics of the
conformational transition by W89Y provided an opportunity to
evaluate the transition’s influence on catalytic efficiency. To
determine the degree of coupling of the two stages of the enzy-
matic reaction, i.e. 2OG decarboxylation and subsequent DNA

FIGURE 11. Representative HPLC assays of 2OG and DNA turnover. Decarboxylation of 2OG co-substrate (top) and demethylation of DNA substrates
(bottom) in standard reaction buffer at 37 °C were quantified in parallel using Aminex HPX-87H and Phenomenex Luna C18 columns, respectively. Because the
extinction coefficient of the Suc co-product at 210 nm is too low for reliable quantification, decarboxylation of 2OG was measured based on its depletion compared
with pyruvate, an internal control compound that is not chemically modified during incubation or analysis. The chromatograms labeled “- control” come from mock
reactions incubated in the absence of enzyme. A and B, comparison of 2OG turnover (A) during demethylation (B) of 5�-TmAT-3� trimer substrate versus 5�-CAmAAT-3�
pentamer substrate by the WT enzyme. Peak integration indicates 
5.1 2OG molecules are decarboxylated per DNA trimer substrate demethylated, compared with

1.1 2OG molecules per DNA pentamer substrate (i.e. 76 �M 2OG oxidation for 15 �M 5�-TmAT-3� demethylation versus 20 �M 2OG oxidation for 19 �M 5�-CAmAAT-3�
demethylation). Reactions initially containing 150 �M 2OG, 30 �M 5�-TmAT-3�, and 0.5 �M enzyme were allowed to proceed for 30 min, whereas reactions initially
containing 150 �M 2OG, 24 �M 5�-CAmAAT-3�, and 0.2 �M enzyme were allowed to proceed for 20 min. C and D, comparison of 2OG turnover (C) by 0.2 �M WT versus
W89Y mutant enzyme during demethylation (D) of the longer 5�-CAmCAT-3� pentamer substrate. Both enzyme variants oxidize roughly one 2OG molecule per DNA
pentamer substrate demethylated, although W89Y turns over somewhat more slowly than WT (13 versus 20 �M of co-substrate/substrate turned over). Reactions
initially containing 100 �M 2OG and 20 �M 5�-CAmCAT-3� were incubated for 5 min. E and F, comparison of 2OG turnover (E) by 0.5 �M WT enzyme (thick solid lines)
versus 1.2 �M W89Y mutant enzyme (thin solid lines) during demethylation (F) of the shorter 5�-TmAT-3� trimer substrate. At every time point, greater 2OG decarbox-
ylation and less DNA demethylation was observed for the W89Y mutant relative to the WT enzyme. Therefore, the W89Y mutation substantially increases the oxidation
of 2OG uncoupled from demethylation of the shorter trimer DNA substrate, which is released from the enzyme more rapidly than the longer pentamer DNA substrate
(Fig. 13, D and E). Reactions initially containing 150 �M 2OG and 30 �M 5�-TmAT-3� were incubated for 5 (pink), 10 (blue), or 30 (green) minutes. The dashed line shows
data from a mock (control) reaction without enzyme.

TABLE 4
Catalytic parameters of WT and mutant AlkB-�N11 enzymes
The kcat and Km values were determined by Michaelis-Menten analysis. The koff values were measured by monitoring fluorescence anisotropy during competitive
DNA-displacement experiments (e.g. as shown in Fig. 13, A–E). Michaelis-Menten analyses and DNA substrate release measurements were performed in the standard assay
buffer at 10 °C. The 2OG/DNA coupling ratio (i.e. the ratio of 2OG co-substrate turnover to DNA substrate turnover) was measured at the end of a 20-min incubation period
for pentamer DNA substrate or a 30-min incubation period for trimer DNA substrate at 37 °C.

WT W89Y M61L M92L I119M

5�-TmAT-3� kcat (min�1) 5.2 � 0.2
Km (�M) 3.2 � 0.4
koff (min�1) 108 � 48
2OG/DNA 4.9 � 0.5 9.9 � 2.1 12.3 � 1.2 5.1 � 0.3 4.1 � 0.7

5�-CAmCAT-3� kcat (min�1) 21.2 � 1.1
Km (�M) 0.4 � 0.1
koff (min�1) 1.80 � 0.02 7.5 � 0.3 16.7 � 1.8 1.90 � 0.03
2OG/DNA 0.9 � 0.1 0.8 � 0.3

5�-CAmAAT-3� 2OG/DNA 1.0 � 0.1 1.5 � 0.2
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demethylation, we developed an HPLC method to quantify the
rate of 2OG oxidation in parallel with DNA substrate demeth-
ylation (Figs. 11, 12, and 15A and Table 4). Wild-type AlkB
consumes one molecule of 2OG for each molecule of penta-
mer substrate demethylated (i.e. 5�-CAmCAT-3� or 5�-CA-
mAAT-3� in Figs. 11, A–D, and 12, D–F), indicating essentially
perfect coupling. In contrast, AlkB consumes 
5 molecules of
2OG per molecule of trimer substrate demethylated (i.e.
5�-TmAT-3� in Fig. 12, A–C). Fluorescence anisotropy assays of

the release rate of methylated DNA substrate from the Mn(II)/
Suc complex demonstrate that trimer substrate is released from
the co-product complex 
60-fold more rapidly than pentamer
substrate (Fig. 13, D and E, and Table 4), and this accelerated
release accounts for the premature quenching of the oxyferryl
intermediate and uncoupled 2OG turnover in 
80% of oxida-
tion reactions that occur when trimer substrate is bound. These
observations indicate that the lifetime of the oxyferryl interme-
diate is 
11 s (kcat for 5�-CAmCAT-3� (31)) and that the

FIGURE 12. 2OG decarboxylation is decoupled from demethylation of trimer DNA substrate by the WT enzyme and further decoupled by mutations
favoring the open state of the NRL. A–C show enzyme turnover data for the 5�-TmAT-3� trimer substrate, whereas D–F show the equivalent data for the
5�-CAmAAT-3� pentamer substrate. A, yield of decarboxylated 2OG per molecule of WT (black, 0.5 �M), W89Y (red, 1.2 �M), or M61L (blue, 0.7 �M) AlkB-�N11 as
function of time in the presence of DNA trimer substrate. B, yield of demethylated 5�-TmAT-3� in the same reactions. C, ratio of 2OG oxidation versus 5�-TmAT-3�
demethylation in these reactions. D, yield of decarboxylated 2OG per molecule of WT (black, 0.2 �M), W89Y (red, 0.5 �M), and AlkB-�N11 as function of time in
the presence of DNA pentamer substrate. E, yield of demethylated 5�-CAmAAT-3� in the same reactions. F, ratio of 2OG oxidation versus 5�-CAmAAT-3�
demethylation in these reactions. Enzyme reactions were carried out at 37 °C in 150 �M 2OG, 75 �M Fe(NH4)2(SO4)2, 500 �M ascorbate, 150 �M sodium pyruvate,
75 mM KCl, 50 mM Na-HEPES, pH 7.6.

FIGURE 13. Mutations favoring the open state of the NRL and enhancing uncoupled 2OG decarboxylation accelerate the release of DNA substrate.
A–C, fluorescence anisotropy assays of the rate of release of 10 nM 5�-CAmCAT-3� substrate from 4 �M WT (A), W89Y (B), or M61L (C) AlkB-�N11 in the presence
of 2 mM Suc. Release was initiated by addition of 20 �M unlabeled DNA substrate under the conditions used for the anisotropy assays in Fig. 3. D and E,
fluorescence anisotropy assays were used to measure the release rate of 5�-CAmCAT-FAM-3� (D, koff � 1.8 min�1) or 5�-TmAT-FAM-3� (E, koff 
108 min�1) from
WT AlkB-�N11 at 10 °C in standard buffer containing 20 �M Mn(II) and 2 mM Suc. F shows Michaelis-Menten kinetic assays performed for 5�-CAmCAT-3� (black,
kcat � 21.2 min�1) and 5�-TmAT-3� (red, kcat � 5.2 min�1) in the standard assay buffer at 10 °C as described previously (23) with minor modifications described
under “Experimental Procedures.” Error bars represent the standard error of the mean.
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enzyme releases longer DNA substrates more slowly than the
forward reaction rate with methylated nucleobase (Figs. 1D and
13, D–F). Notably, the Mn(II)/Suc complex does not release the
pentamer substrate more rapidly than the Mn(II)/2OG com-
plex (Fig. 14), which is contrary to previous claims (32, 35) but is
consistent with the need to sequester the oxyferryl intermedi-
ate in the active site after Suc generation.

Protein Dynamics Control the Catalytic Efficiency of AlkB—
The observation that the release rate of the DNA substrate is a
critical determinant of catalytic efficiency provides a sensitive
starting point for analysis of the influence of protein mutations
on this process. The M61L mutation, which changes a residue
directly contacting the DNA substrate, substantially accelerates
DNA substrate release (Fig. 13C and Table 4) while only slightly
perturbing the thermodynamics of the functional conforma-
tional transition characterized above (Figs. 5F and 9). This
point mutation substantially increases turnover of 2OG uncou-
pled from DNA demethylation (Fig. 12, A–C), confirming that
premature release of methylated substrate causes uncoupling.
Strikingly, a similar increase in DNA release rate (Fig. 13, A and
B, and Table 4) and uncoupled 2OG turnover (Fig. 12, A–C) is
caused by the W89Y mutation, which is remote from the active
site (Fig. 1B) but strongly biases the enzyme conformation
toward the open conformation (Figs. 4 and 8). In contrast, the
mutation of methionine residue Met-92, which is located in a
region of the protein that is not significantly affected during the
ligand-dependent conformational transition (Fig. 5A), alters nei-
ther the rate of DNA release nor the efficiency of coupling between
2OG turnover and DNA repair (Fig. 15 and Table 4). These results
demonstrate that, in addition to controlling the proper order of

co-substrate/substrate binding (Fig. 3), the conformational transi-
tion between open/closed states of the NRL determines the DNA
release rate, which critically modulates the catalytic efficiency of
AlkB. If this transition were too slow, the rate of DNA repair would
be limited due to slow product release. Our results demonstrate
that, if this transition is too fast, catalytic efficiency is reduced
because of increased uncoupled turnover of the 2OG co-substrate.
Therefore, the kinetics of the conformational transition gating
DNA substrate binding have evolved to control sequestration of
the reactive oxyferryl intermediate and the net efficiency of the
catalytic reaction cycle of AlkB.

DISCUSSION

Like other Fe(II)/2OG dioxygenases, AlkB performs a high
energy chemical transformation requiring coordination of the
binding of four cofactor/substrate molecules followed by
sequestration of a highly reactive enzyme-bound intermediate
(2). Previous research suggested that the dynamics of AlkB con-
tribute to several stages in its reaction cycle, including binding
of structurally diverse substrates (23), coupling between suc-
cessive chemical steps in the reaction cycle (23), and facilitating
release of the repaired DNA product (32). In this study, by com-
bining fluorescence spectroscopy and NMR spectroscopy with
enzymological assays, we demonstrate that a specific protein
conformational transition orchestrates the complex multistep
catalytic reaction cycle of AlkB (Fig. 1D), controlling both the
proper sequential order of cofactor/substrate binding as well as
the kinetic sequestration of the reactive oxyferryl intermediate.

This transition changes AlkB from an open conformation
that has yet to be observed crystallographically to a closed con-
formation resembling that in substrate- and product-bound
crystal structures (14, 23, 31). Our spectroscopic data demon-
strate that the open conformation has similar net secondary
structure content as measured by CD (Fig. 2, A and C) but an
altered environment of the Trp and Met residues proximal to
the active site and at the interface between the Fe(II)/2OG core
and the NRL (Figs. 3, A–D, and 4). Previous amide-exchange
measurements showed that the backbone of the NRL has
enhanced dynamics in the open conformation (23), and the
NMR data presented here show that its methionine side chains
are disordered in this conformation (Fig. 5). Therefore, the key
conformational transition controlling the catalytic reaction
cycle of AlkB involves movement of the NRL away from the
active site into a more open position where it participates in

FIGURE 14. Oxidation of 2OG to Suc does not enhance the release rate of
methylated DNA substrate. The release rate of 5�-CAmCAT-FAM-3� from WT
AlkB in complex with Suc/Mn(II) (A) or 2OG/Mn(II) (B) was measured at 10 °C in
the standard buffer containing 20 �M MnCl2 and either 2 mM Suc (A) or 100 �M

2OG (B). These competitive binding experiments were carried out as
described for Fig. 13, A–D. Based on several replicates of each experiment, the
DNA release rate is 3.4 � 0.2 min�1 from the Mn(II)/2OG complex and 1.80 �
0.02 min�1 from the Mn(II)/Suc complex.

FIGURE 15. AlkB-�N11 mutants with unaffected 2OG/DNA coupling efficiency have DNA substrate release rates similar to the wild-type enzyme. A,
coupling of 2OG oxidation to 5�-TmAT-3� demethylation by WT (black), M92L (red), or I119M (blue) enzymes was quantified as shown in Fig. 11 in reactions
conducted at 37 °C in the standard assay buffer. Although some uncoupled decarboxylation of the 2OG co-substrate occurs in the absence of alkylated DNA
substrate, its addition substantially increases the rate of this reaction (12, 13). B, fluorescence anisotropy assays were used to measure the release rate of
5�-CAmCAT-FAM-3� from WT (left) or M92L (right) enzyme at 10 °C in standard buffer containing 20 �M Mn(II) and 2 mM Suc. Competitive binding experiments
were conducted as described for Fig. 13.
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fewer constraining interactions with the Fe(II)/2OG core (as
schematized in Fig. 1C).

In the metal-bound enzyme, this open state is favored over
the closed state by a factor of 
5:1, as elucidated by the NMR
data presented here. Binding of 2OG or Suc changes this ratio
to 
0.5:1, which importantly increases the affinity for DNA
substrate. Although some variation in the exact ratio is possible
with co-substrate versus co-product in the buffers at acidic or
neutral pH, our 1H-13C chemical shift data (Figs. 5– 8) suggest
that any such variations are relatively small. Using these data,
the estimated proportion of the closed state in the Zn(II)/2OG
complex is 0.64 � 0.05 at pD 5.5 and 0.59 � 0.06 at pD 7.6, and
the estimated proportion of the closed state in the Zn(II)/Suc
complex is 0.61 � 0.05 at pD 5.5.

Comparing the apoenzyme (i.e. with neither metal cofactor nor
2OG co-substrate bound) with the metal/2OG complex, the affin-
ity for the DNA substrate is increased by 
100-fold by Fe(II)/2OG
binding, as demonstrated by our fluorescence binding experi-
ments. Thus, the transition toward the closed state controls the
proper sequential order of substrate binding. We also demonstrate
that DNA binding greatly stabilizes the closed state and that muta-
tions that bias the transition toward the open state substantially
accelerate DNA substrate release and enhance uncoupled turn-
over of 2OG. Therefore, the kinetics of the conformational transi-
tion gating DNA binding directly control sequestration of the
reactive oxyferryl intermediate and thereby the net efficiency of
the catalytic reaction cycle. In wild-type AlkB, the opening kinetics
are tuned to mediate release of the DNA substrate/product slightly
more slowly than hydrogen abstraction from the primary sub-
strate, to produce efficient repair of this substrate without promot-
ing uncoupled turnover of 2OG and adventitious oxidative side
reactions. Dynamic conformational transitions of this kind are
likely to control the catalytic efficiency of other Fe(II)/2OG dioxy-
genases as well as many other enzyme families performing com-
plex biomolecular transformations.
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